Inferring Causality from Noisy Time Series Data - A Test of Convergent Cross-Mapping

نویسندگان

  • Dan Mønster
  • Riccardo Fusaroli
  • Kristian Tylén
  • Andreas Roepstorff
  • Jacob Friis Sherson
چکیده

Convergent Cross-Mapping (CCM) has shown high potential to perform causal inference in the absence of models. We assess the strengths and weaknesses of the method by varying coupling strength and noise levels in coupled logistic maps. We find that CCM fails to infer accurate coupling strength and even causality direction in synchronized time-series and in the presence of intermediate coupling. We find that the presence of noise deterministically reduces the level of cross-mapping fidelity, while the convergence rate exhibits higher levels of robustness. Finally, we propose that controlled noise injections in intermediate-to-strongly coupled systems could enable more accurate causal inferences. Given the inherent noisy nature of real-world systems, our findings enable a more accurate evaluation of CCM applicability and advance suggestions on how to overcome

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Limits to Causal Inference with State-Space Reconstruction for Infectious Disease

Infectious diseases are notorious for their complex dynamics, which make it difficult to fit models to test hypotheses. Methods based on state-space reconstruction have been proposed to infer causal interactions in noisy, nonlinear dynamical systems. These "model-free" methods are collectively known as convergent cross-mapping (CCM). Although CCM has theoretical support, natural systems routine...

متن کامل

Spatial convergent cross mapping to detect causal relationships from short time series.

Recent developments in complex systems analysis have led to new techniques for detecting causal relationships using relatively short time series, on the order of 30 sequential observations. Although many ecological observation series are even shorter, perhaps fewer than ten sequential observations, these shorter time series are often highly replicated in space (i.e., plot replication). Here, we...

متن کامل

Distinguishing time-delayed causal interactions using convergent cross mapping

An important problem across many scientific fields is the identification of causal effects from observational data alone. Recent methods (convergent cross mapping, CCM) have made substantial progress on this problem by applying the idea of nonlinear attractor reconstruction to time series data. Here, we expand upon the technique of CCM by explicitly considering time lags. Applying this extended...

متن کامل

Causality Testing: A Data Compression Framework

Causality testing, the act of determining cause and effect from measurements, is widely used in physics, climatology, neuroscience, econometrics and other disciplines. As a result, a large number of causality testing methods based on various principles have been developed. Causal relationships in complex systems are typically accompanied by entropic exchanges which are encoded in patterns of dy...

متن کامل

On the Efficacy of State Space Reconstruction Methods in Determining Causality

We present a theoretical framework for inferring dynamical interactions between weakly or moderately coupled variables in systems where deterministic dynamics plays a dominating role. The variables in such a system can be arranged into an interaction graph, which is a set of nodes connected by directed edges wherever one variable directly drives another. In a system of ordinary differential equ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016